Cum să găsiţi volumul

Volumul Cifrei este Un spaţiu tridimenzional ocupat de acaastă figură. Imaginaţi-vă Volumul Cantitatea de Lichid (Sau AER SAU NISIP), PE Care O Puteţi Completa Acaastă Figură. Volumul este măsolog în Unităţi Cubi (mm, cm, m). Acest articol vă va odrezati sperma să calculaţi volumul ase cifre tridimenzale. Este Posibil Să Passaţi Că Multi Formule Pentru Calcularea Slični, Njega Simpliffă Memoragea Acestora.

Pasi

Metoda 1 DIN 6:
Cub
  1. Zamislite Intiturită Calculaţi Volumul 1
un. Cubul Este o Figură tridimenzională Care su şse Feţe Pătrate identicije, Adică Toate Părţile (obala) Sunt egale.
  • De Exemplu, Redarea Osului Este Este UN.
  • Zamislite Intiturită Calculaţi Volumul 2
    2. Formula Pentru Găsirea Volumului Cubului: V = S, Unde V este Volumul şi S - Lungimea Coostei.
  • Construcţia Cubului Este Slično cu Urmăoarea Multiplikare: s = S * s * s
  • Zamislite Intiturită Calculul Volumului Pasul 3
    3. Găsiţi partija laterală (coven) kuba. Acesta Va fi dat în sarcină sau trebuie să lă măsuraţi (riglă sau vlada). Deoarece Margilile Cubului Sunt Egele, Măsuraţi Oriće Margine.
  • Dacă nu Sunteţi Sigur Că Figura DVS. Este UN Cub, măsuraţi fiacare parte pentru a asigura că acestea Sunt egale. Dacă acestea nu sunt egale, Mergeţi la Următoaarea Secţine.
  • Zamislite Intiturită Calculul Volumului Pasul 4
    4. Podmorje lungimea marginii cubului în formula v = s. De Exemplu, Dacă marginea cubului este de 5 cm, Scrieţi formula DUPă Cum Urmează: v = 5 = 5 * 5 * 5 = 125 cm este Volumul de Cub.
  • Zamislite Intiturită Calculul Volumului Pasul 5
    Cinci. Pentru na răspunde, asiguraţi-vă că impunţi Unităţile Corspinzăare de măsurare. În Exemplul de Mai Sus, marginea cubului frost măsurată în centimetri, astfel încât Volumul Va fi măsurat în centimetri kubi. Dacă, de Exemplu, Atea de Cub este de 3 cm, apoi v = 3 = 27 cm.
  • Metoda 2 DIN 6:
    Prismul DrepPunGiular / Paralelipiped DrepPunGyular DrepPunGyular
    1. Zamislite Intiturită Calculul Volumului Pasul 6
    un. Paralelipiped DreptunGiular Sau Prisma DrepTunGiulară este o Figură tridimenzională cu Şse fene, dentre acestea fino dreptunghi (amintiţi cutia de Pantofi).
    • Cubul Este UN CAZ Specijalni Al UNui Paralelipiped DrepPunGyular, an Care Zalijebiti obale Sunt egale.
  • Zamislite Intiturită Calculul Volumului Pasul 7
    2. Formule Pentru Găsirea Volumului paralopira dreptungGyular Sau A UNEI PRISME DREPTUNGHIULARE: V = l * w * h, UNDE V = Volum, L = Luninga, W = Lăţime, h = înălţime.
  • Zamislite Intiturită Calculul Volumului Pasul 8
    3. Lungimea paralelipipes dreptunghiulară este cea mai laungă margine feei superioreare sau inferioureare, Adica: Feelee PE Care Paralelipiped (Marginea de Jos) Sunt încioare sau paralele cu (marginea superioară). Lungimea Va fi dată în sarcină sau trebuie să o măsuraţi (riglă sau vlada).
  • Exemplu: Lungimea paralelipipe dreptunGilulară este de 4 cm, adica l = 4 cm.
  • Nu vă Faceţi Griji Cu Osiguravanje La Ce Margini Să alegeţi ca lungime, Lăţimi şi înălţimimi. ORICE CAZ, îN CELE DIN URMăE, Veţi Obţine Romspunsul potrivit (Măsuraţi doar Trei COUSTE Perpendiculare ître Ele).
  • Zamislite Intiturită Calculul Volumului Pasul 9
    4. Lăţimea Paralelipipes DrepTunGilulară este Cea Mai Mai Margine Feei Superioare Sau Inferioureare, Adică Feee PE Care Paralelipiped (marginea inferioară) Sunt încioare sau paralele cu (marginea superioară). Lăţimea Va fi dată în sarcină sau trebuie să o măsuraţi (riglă sau prakse).
  • Exemplu: Lăţimea paralelipipe dreptunghielară este de 3 cm, adica w = 3 cm.
  • Dacă măsuraţi obala Paralelipiped Cu Un Conducător sau prajta, Nu Uutitaţi să le măsuraţi în aceleaşi Unităţi de măsură. Nu măsuraţi o margine în milimetri şi altul în centimetri.
  • Zamislite Intiturită Calculul Volumului Pasul 10
    Cinci. Îlălţimea paralelipipepei dreptungiulare este Dintre Dentre Feeleee inferioarea. Înălţimea va fi dată în sarcină sau trebuie să o măsuraţi (riglă sau prakse).
  • Exemplu: înălţimea paralelipipes dreptunghielară este de 6 cm, Adica H = 6 cm.
  • Zamislite Intiturită Calculul Volumului Pasul 11
    6. Podmornilo valorile găsite în formule v = l * w * h.
  • În exemplul nosru l = 4, w = 3 şi h = 6. Prin Urmare, v = 4 * 3 * 6 = 72.
  • Zamislite Intiturită Calculul Volumului Pasul 12
    7. Pentru u răsporeu. În Exemplul dat, živčani au frost măsite în centimetri, astfel încât Volumul Va fi măsurat în centimetri cubo: 72 cm.
  • D = 2 cm, w = 4 cm, h = 8 cm, apoi v = 2 * 4 * 8 = 64 cm
  • Metoda 3 DIN 6:
    Cilindru
    1. Zamislite Intiturită Calculul Volumului Pasul 13
    un. Cilindrul este o Figură tridimenzională limită de o suprafaţă cilindrică şi două planuri paralele care o traversează.
    • De Exemplu, o baterie bancă sau aa su o for formă cilindru.
  • Zamislite Intiturită Calculul Volumului Pasul 14
    2. Formule Pentru Găsirea Volumului cilindrului: V = πrh, Unde V este Volumul, H este înălţimea, r este raza bazei şi a cilindrului.
  • În Unele Sarcini, Răspunsul este necesar Să se prezinte cu pi_i în Unele în loc de pi pentru a înlocui 3.četrnaest.
  • Formule Pentru Găsirea Volumului Cilindrului este de Forte Asemănăare Cu Formule Pentrua Calcularea Volumului Prismei DreptunGiulare, Adici, vă alternation îălţimea. Într-o prismă dreptunghiyulară, zona de bază este l * w, iar îlin cilindrul este egal cu πr.
  • Zamislite Intiturită Calculul Volumului Pasul 15
    3. Găsiţi Raza Bazei. El este cel mai probabil dat în sarcină. DACă este administrativno dijametrat, împărţiţi-l la 2 pentru a găsi o rază (d = 2r).
  • Zamislite Intiturită Calculul Volumului Pasul 16
    4. Dacă raza nu este dată, măsuraţi-o. Pentru aceara, măsuraţi baza cilindrului utilizând UN Conducător sau o vladavina. Măsuraţi baza în aea mai largă parte (Adic ă măsuraţi DiamTetrul de Bază) şi apoi împărţiţi valoaarea obţinută la 2 pentru a găsi o razăă.
  • O Altă Opţiune - măsuraţi Lungimea Cercului cilindrului (Care Este, Măsuraţi Currefeferiinţa cilindrului) Cu AJOUTUL UNEI DREETă, Apoi Găsiţi Raza Konformulei r = c / 2π, Unde C-Curreferencinţa (Curruferiinţa) cilindru (2π = 6,28).
  • De Exemplu, Dacă Autorţinţa cilindrului este de 8 cm, atuncija raza va fi de 1,27 cm.
  • Dacă aveţi nevoie de măsurare točno, puteţi utiliza ambile metode pentru a asigura că se potresc valorile Razei (Găsirea Razei Prin Lungimea Curreferţei este o Metodă Mai Precisă.
  • Zamislite Intiturită Calculul Volumului Pasul 17
    Cinci. Calculaţi zona de bază rotundă. Pentru lica acest lucru, înlocuiţi raza în formula πr.
  • Dacă Raza de Bază esthe de 4 cm, atuncija Zona de Bază este egală cu π4.
  • 4 = 4 * 4 = 16. 16 * π = 16 * 3,14 = 50,24 cm
  • Dacă este indikat DiameTrul de Bază, amintiţi-vă că d = 2r. Trebuie să împărţărţiţi DiameTrul în jumătate pentru a găsi o razdlaže.
  • Zamislite Intiturită Calculul Volumului Pasul 18
    6. Găsiţi înălţimea cilindrului. Aceara este DINANţA DINTRE DOUă MOTIVE ROTENDE. Înălţimea va fi dată în sarcină sau trebuie să o măsuraţi (riglă sau prakse).
  • Zamislite Intiturită Calculul Volumului Pasul 19
    7. Înmulţiţi Zona de Bază la înălţimea cilindrului pentru a-şi găsi volumul. Sau pur şi simure înlocuiţi valorile valorilor corspinzăare în formula v = πrh. În Exemplul nosru, Când Raza de Bază este de 4 cm, Iar înălţimea este de 10 cm:
  • V = π410
  • π4 = 50,24
  • pedeset.24 * 10 = 502.4
  • V = 502.4
  • Zamislite Intiturită Calculul Volumului Pasul 20
    Odlučiti. Pentru na răspunde, asiguraţi-vă că impunţi Unităţile Corspinzăare de măsurare. În Exemplul de Mai Sus, toalet valorile au frost măsint în centimul va fi măsurat în centimetri cubo: 502,4 cm.
  • Metoda 4 DIN 6:
    Piramida Dreaptă
    1. Zamislite Intiturită Calculul Volumului Pasul 21
    un. Piramida este o Figură Tridimenzională, La Baza Căreia Poligonul se află, Iar Feelee Sunt Triunggiuri Având Un vârf Ukupno.Piramida corectă este o Figură tridimenzională, La Baza Căreia Se Află Poligonul Drept (CU FATIDE EGALE), IAR Vârful este Proiectat în Centrul Bazei.
    • De tvrtke Reprezintă o Piramidă având o Bază Pătrată, Dar La Baza Piramidei Poate fi Poligon de la 5, 6 Sau Chiar Cu 100 de Laturi!
    • Piramida cu o bază rotundă se numeşte conlul care va fi dis discutat în Urmăarea Secţine.
  • Zamislite Intiturită Calculaţi Volumul 22
    2. Formule Pentru Găsirea Volumului Piramidei Drepte: V = 1 / 3bh, undere b este zona de bazăe piramidei, h este înălţimea piramidei (perpendikular, conectâd baza şi vârful piramidei).
  • Acaaraă formulă pentrua calculalui piramidei este la Fel de fel de potivită Atât pentru Piramidele Drepte (în Care Vârful Este Proisect în Centrul Bazei).
  • Zamislite Intiturită Calculul Volumului Pasul 23
    3. Calculaţi zona de fundaţie. Formula Va denindre de format situată la baza piramidei. În Exemplul nosru, La Baza Piramidei, equeăă pătrat cu o latheră de 6 cm. Pătrat pătrat este s, Undere este partiju laterală a pătratului. Astfel, în Exemlul nosru, Zona de Bază Piramidei este de 6 = 36 cm
  • Zona de triunghi este de 1 / 2bh, Undere H este înălţimea tringgiului, b - partija la care fost efectuată înălţimea.
  • Suprafaţa oricărui poligon corect ficculată prin formula: a = 1/2, unde este este zona, p este perimetralul figurii şi - apopm (segment skrb Leagă centrul Formei DIN MIJLOCUL MIJLOKULI ORICE ORICE) Figurii). Pentru mai Multi Informaţii despre Găsirea Zoneri Poligoanelor, Citiţi Acest articol.
  • Zamislite Intiturită Calculul Volumului etapa 24
    4. Găsiţi înălţimea piramidei. Înălţimea va fi dată în sarcină. În Exemplul nosru, înălţimea piramidei este de 10 cm.
  • Zamislite Intiturită Calculul Volumului Pasul 25
    Cinci. Înmulţiţi zona de bază a piramidei la înălţimea SA, apoi împărţiţi rezultatul obţinut de 3 pentru je volumul piramidei. Formule PENTU CALCULALALI Piramidei: v = 1 / 3bh. În Exemplul Nostru, Zona de Bază Est Egală Cu 36, Iar înălţimea este de 10, deci Volumul: 36 * 10 * 1/3 = 120.
  • Dacă, de Exemplu, o Piramidă cu o Baza Pentagonală de 26 şi înălţimea piramidei este de 8, apoi Volumul Piramidei: 1/3 * 26 * 8 = 69,33.
  • Zamislite Intiturită Calculaţi Volumul 26
    6. Pentru na răspunde, asiguraţi-vă că impunţi Unităţile Corspinzăare de măsurare. În Exemplul de Mai Sus, toalet valorile au frost măsit în centimetri, astfel încât Volumul Va fi măsurat în centimetri cubo: 120 cm.
  • Metoda 5 DIN 6:
    Con
    1. Zamislite Intiturită Calculaţi Volumul 27
    un. Cul Este o Figură Tridimenzională Care su o Bază Rotundă şi Un vrh. Sau con este un caz specijalno de piramidă cu o bază rotundă.
    • DACă partija des conului este izravno Peste Centrul Bazei Rotunde, Cul Este Sumtit Direct, Altfel Conlul Este numit înclinat. Dar Formula PENTUA CALCULAIOALUI CONULUI ESTE ACEEAŞ.
  • Zamislite Intiturită Calculul Volumului 28
    2. Formule Pentru CalculalaieUlui CONULUI: V = 1 / 3πrh, UNEI BAZ ROTENDE, UNDE R ESTO ROTUNDE, H - îNălţimea CONULUI.
  • B = πr este zona bazei rotunde conului. Astfel, Formule PENTU CALCULAUA HOLULUUI CONULUI POATE FI SCRISA: V = 1 / 3BH, skrb koincide CU formule PENTU GOSIREA Volumului Piramidei!
  • Zamislite Intiturită Calculaţi Volumul 29
    3. Calculaţi zona de bază rotundă. Raza ar Trebui să fie dată în sarcină. Dacă este indikat DiameTrul de Bază, amintiţi-vă că d = 2r. Trebuie să împărţărţiţi DiameTrul în jumătate pentru a găsi o razdlaže. Pentrula kalkula zona bazei rotunde, înlocuiţi raza în formula πr.
  • De Exemplu, Raza Bazei Rotunde countui este de 3 cm. Apoi Zona Acestei Pečajte este egală cu π3.
  • π3 = π (3 x 3) = 9π.
  • = 28,27 cm
  • Zamislite Intiturită Calculează etapa Volumului 30
    4. Găsiţi înălţimea conului. Aceara este o perpendikuară, coborâtă des su la baza piramidei. În Exemplul nosru, înălţimea conului este de 5 cm.
  • Zamislite Intiturită Calculul Volumului Pasul 31
    Cinci. Înmulţiţi înălţimea conului şi a zone de bază. În Exemplul Nostru, Zona de Bază este EGALă CU 28,27 cm, Iar înălţimea este de 5 cm, prin Urmare BH = 28,27 * 5 = 141,35.
  • Zamislite Intiturită Calculaţi Volumul 32
    6. Acum Multiplikaţi Rezultul rezultat PE 1/3 (sau împărţiţi-l PE 3) pentru u Găsi Volumul Culuui. În Paşii Descrişi Mai Sus, Aţi Găsit Volumul Cilindrului, Iar Volumul Conului este întotdeauna de 3 ori MIC TALTHUL CILINDRULUI.
  • În Exemplul nosru: 141.35 * 1/3 = 47,12 - Acesta este Volumul CONULUI.
  • SAU: 1 / 3π35 = 47,12
  • Zamislite Intiturită Calculează etapa Volumului 33
    7. Pentru na răspunde, asiguraţi-vă că impunţi Unităţile Corspinzăare de măsurare. În Exemplul de Mai Sus, za toide valorile au frost măsint în centimetri, astfel încât Volumul Va fi măsurat în centimetri kubi: 47,12 cm.
  • Metoda 6 DIN 6:
    Zveckanje
    1. Zamislite Intiturită Calculează etapa Volumului 34
    un. Mingee Este Figura Perfectă Tridimenzională, Feicare Punkt de Suprafaţă Ede EGAL CU UN-a UN (Centrul Mingelor) t.
  • Zamislite Intiturită Calculul Volumului Pasul 35
    2. Formule PENTU CALCULALA MINGELOR: V = 4 / 3πr, undere r esto razle.
  • Zamislite Intiturită Calculaţi Volumul 36
    3. Găsiţi raza meingea. Raza ar Trebui să fie dată în sarcină. Dacă se administracija DiameTrul Bilei, amintiţi-vă că d = 2r. Trebuie să împărţărţiţi DiameTrul în jumătate pentru a găsi o razdlaže. De Exemplu, o Rază de žućke este de 3 cm.
  • Zamislite Intiturită Calculul Volumului 37
    4. Dacă raza nu este dată, calculaţi-o. Pentru lica Acest Lucru, măsuraţi Lungimea Cercului mingelor (de Exemplu, o Minche de Tenis) îN Cea Mai Largă parte, Cu Ajutureul Unei Frânghii, Unui Fil Sau A Altui Subock Slični. Apoi Măsuraţi Lungimea Cablului pentrua găsi lungimea certului. Împărţiţi valoarea obţinută cu 2π (SAU CU 6.28) pentru kalkula raza de žuč.
  • De Exemplu, dacă aţi măsurat meingea şi aţi constanata Că Lungimea Cercului său este de 18 cm, împărţiţi acest număr cu 6,28 şi obţineţi că raza menzii este de 2,87 cm.
  • Faceţi 3 măsurând Cercul Mingelor şi Apoi în Medie Valorile obţinute (pentru aceara, să le împingeţeţi şi să le împărţărţiţi la 3) pentru a asigura că aveţi o Valoare aproape de adevărat.
  • De Exemplu, ca rezultat al a trei măsurători Ale Lungimii Curruriinţei, Aţi Primit Următoarele režultat: 18 cm, 17,75 cm, 18,2 cm. Fold aceste valori: 18 + 17,5 + 18,2 = 53,95, apoi împărţiţi-le la 3: 53,95 / 3 = 17,98. Utilizaţi aceara valoare medie în calculele sruclui.
  • Zamislite Intiturită Calculează etapa Volumului 38
    Cinci. Construiţi o RAZ în Cub (r). Adica, r = r * r * r. În exemplul nosru r = 3, prin Urmare r = 3 * 3 * 3 = 27.
  • Zamislite Intiturită Calculul Volumului Pasul 39
    6. Acum Multiplikaţi rezultatul obţinut până la 4/3. Puteţi Utiliza Uti kalkulator sau multiplikacije priručnik şi apoi simplicaţi flacţiunea. În exemplul nosru: 27 * 4/3 = 108/3 = 36.
  • Zamislite Intiturită Calculează etapa Volumului 40
    7. Înmulţiţi rezultul rezultat pe π (3.14) PENTRU GUSI Volumul Mingelor.
  • În Exemplul nosru: 36 * 3,14 = 113,09.
  • Zamislite Intiturită Calculează etapa Volumului 41
    Odlučiti. Pentru na răspunde, asiguraţi-vă că impunţi Unităţile Corspinzăare de măsurare. În Exemplul de Mai Sus, toide valorile au frost măsint în centimetri, astfel încât Volumul Va fi măsurat în centimetri kubi: 113,09 cm.
  • Slične publikacije